dft = pd.DataFrame(
    {
        "str1": "foo",
        "str2": pd.Series(["bar"] * 3).astype("string"),
        "str3": pd.Series(["qux"] * 3).astype("category"),
        "float64": np.random.RandomState(64).rand(3),
        "int64": 1,
        "float32": np.random.RandomState(32).rand(3).astype("float32"),
        "int8": pd.Series([1] * 3, dtype="int8"),
        "bool": False,
        "date1": pd.Timestamp("20010102"),
        "date2": pd.date_range("1/1/2015", periods=3),
        "date3": np.datetime64('2011-06-24'),
        "delta": [pd.Timedelta(days=i) for i in range(3)]
    }
)
dft
Display each column along with its data type.
dft.dtypes
Return the column count of each data type.
dft.dtypes.value_counts()